

Certificate of Analysis

Aug 02, 2022 | The Flowery

Samples From:

710 Labs Rainbow Belts Flower 14g

710 Labs Rainbow Belts Matrix: Flower

Kaycha Labs

Sample: DA20729010-002 Harvest/Lot ID: 20220630-710RB-H

> Batch#: 1000030794 Cultivation Facility: N/A Processing Facility: N/A

Seed to Sale# LFG-00000416 Batch Date: 07/28/22

Sample Size Received: 42 gram Total Batch Size: 455 units

> Retail Product Size: 14 gram Ordered: 07/29/22 Sampled: 07/29/22

Completed: 08/02/22 Sampling Method: SOP.T.20.010

PASSED

Page 1 of 5

Homestead, FL, 33090, US

#FLOWERY

PRODUCT IMAGE

SAFETY RESULTS

Pesticides PASSED

Heavy Metals **PASSED**

Microbials

PASSED

PASSED

Residuals Solvents

PASSED

Water Activity PASSED

THCV

0.05

0.001

Moisture PASSED

MISC.

TESTED

PASSED

СВС

9.1

%

0.065

0.001

Cannabinoid

Total THC

Total THC/Container: 2196.32 mg

CBDA

0.086

12.04

0.001

%

Total CBD 0.122%

D8-THC

0.074

10.36

0.001

%

Total CBD/Container: 15.26 mg

0.126

17.64

0.001

%

0.049

6.86

0.001

%

Total Cannabinoids .456%

CBDV

0.05

0.001

0/0

Total Cannabinoids/Container: 2680.72

0.001

%

3404, 2076, 1665, 3112
Analysis Method: SOP.T.40.031, SOP.T.30.031
Analytical Batch : DA047722POT
Instrument Used : DA-LC-002 (Flower)
Running on: 08/01/22 11:11:08

0.001

mg/unit

LOD

Dilution: 400
Reagent: 072722.R33; 071222.05; 072722.R29
Consumables: 239146; 280670723; CE123; 61633-125C6-125E; R1KB45277

Pipette: DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

0.001

%

Reviewed On: 08/02/22 11:43:25 Batch Date: 07/31/22 10:49:46

CBGA

0.957

0.001

133,98

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo Lab Director

ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Kaycha Labs

710 Labs Rainbow Belts Flower 14g 710 Labs Rainbow Belts Matrix : Flower

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US **Telephone:** (321) 266-2467 Email: osivan@moozacapital.com Sample : DA20729010-002 Harvest/Lot ID: 20220630-710RB-H

Batch#:1000030794 Sampled: 07/29/22 Ordered: 07/29/22

Sample Size Received: 42 gram Total Batch Size: 455 units

Completed: 08/02/22 Expires: 08/02/23 Sample Method: SOP.T.20.010

Page 2 of 5

Terpenes

TESTED

315.50 5.32 ND ND ND ND ND ND ND ND ND ND ND ND ND	5 2.254 0.038 ND 0.02 ND ND ND ND ND ND ND ND ND ND ND ND ND		-	CAMPHOR BORNEOL GERANIOL PULEGONE ALPHA-EDRENE ALPHA-HUMULENE TRANS-NEROLIDOL GUAIOL Analyzed by; 3404, 2651, 385 Analyzis Method: \$507, 3.0.61AR Analyzis Method: \$507, 3.0.61AR Raniprical Batto: DA047736TER Instrument Used: DA-GCMS-005 Running on: 909(UI/22 13:05:04 Dillicitor: 10 Reagen: 032322.16 Consumables: 210414634; MKCNS- Picetts: 1/M.				:20:44 ewed On : 0	/8/02/22 13:39:17 31/22 21:25:55	Extracted by 2651
ND 2.8 ND	ND 0.02 ND ND ND ND 0.416 ND ND ND ND ND ND ND ND ND ND ND ND ND		_	GERANIOL PULEGONE ALPHA-EDRENE ALPHA-HUMULENE TRANS-NEROLIDOL GUAIOL Analyzed by, 3404, 2651, 385 Analysis Method: SOP.T.30.061A.F Analytical Batch: DA047736TER Instrument Uses: DA5-GCM-SOR Running on: 08/01/22 13.05:04 Dilution: 10. Reagent: 032322.16 Consumables: 210414634; MKCNS Consumables: 210414634; MKCNS Consumables: 210414634; MKCNS	0.9478g FL, SOP.T.40.061A.I	0.007 0.007 0.007 0.007 0.007 0.007	3.08 ND ND 24.5 14.42 ND Extraction d 08/01/22 12	0.022 ND ND 0.175 0.103 ND ate: :20:44		2651
2.8 ND ND ND S8.24 ND ND ND ND ND ND	0.02 ND ND ND ND 0.416 ND ND ND ND ND ND ND		-	PULEGONE ALPHA-CEDRENE ALPHA-HUMULENE TRANS-NEROLIDOL GUAIOL Analyzed by: 3404, 2651, 385 Analyzis Nethod: SOP.T.30.061AF Analytical Batch: DAQ47736TER Instrument Used: DA-GCMS-DS Rumning on: 08/01/22 13:05:04 Dilution: 10 Reagene: 032322.16 Consumables: 210414634; MKCNS Consumables: 210414634; MKCNS	0.9478g FL, SOP.T.40.061A.I	0.007 0.007 0.007 0.007 0.007	ND ND 24.5 14.42 ND Extraction d 08/01/22 12	ND ND 0.175 0.103 ND ate: :20:44		2651
ND ND ND S8.24 ND	ND ND ND O.416 ND		_	ALPHA-CEDRENE ALPHA-HUMULENE TRANS-NEROLIDOL GUAIOL Analyzed by: 3404, 2651, 385 Analyzisa Method: 50,7,30,061A.F. Analyzical Batch: 10,447736TER Analyzical Batch: 10,447736TER Analyzical Batch: 10,5047736TER Dilution: 10 Reagent: 0,32322.16 Consumables: 210414634; MKCNS Consumables: 210414634; MKCNS	0.9478g FL, SOP.T.40.061A.I	0.007 0.007 0.007 0.007	ND 24.5 14.42 ND Extraction d 08/01/22 12	ND 0.175 0.103 ND ate: :20:44		2651
ND N	ND ND ND 0.416 ND		_	ALPHA-HUMULENE TRANS-NEROLIDOL GUAIOL Analyzed by: 3404, 2651, 585 Analyzis Method: SOP.T.30.061A.F Analytical Batch: DA047736TER Instrument Uses: DA5-CMS-DOS Running on: 08/01/22 13:05:04 Dilution: 10 Reagent: 032322.16 Consumables: 210414634; MKCNS-Consumables: 210414644; MKCNS-CONSUMABLES: 210414644; MKCNS-CONSUMABLES: 210414644; MKCNS-CONSUMABLES: 210414644; MKCNS-CONSUMABLES: 210414644644; MKCNS-CONSUMABLES: 210414644	0.9478g FL, SOP.T.40.061A.I	0.007 0.007 0.007	24.5 14.42 ND Extraction d 08/01/22 12	0.175 0.103 ND ate: ::20:44		2651
ND ND S8.24 ND	ND ND 0.416 ND ND ND ND ND ND ND ND			TRANS-NEROLIDOL GUAIOL Analyzed by: 3404, 2651, 385 Analysis Method: SOP.T.30.061AF Analysis Method: SOP.T.30.061AF Analytical Bath: DA047736TER Instrument Used: DA-GCMS-005 Running on: 08001/22 13:05:04 Dilution: 10 Reagen: 032322.16 Consumables: 210414634; MKCNS	0.9478g FL, SOP.T.40.061A.I	0.007 0.007	14.42 ND Extraction d 08/01/22 12	0.103 ND ate: ::20:44		2651
ND 58.24 ND	ND 0.416 ND ND ND ND ND ND ND ND			GUAIOL Analyzed by: 3404, 2651, 385 Analysis Method: SOP.T.30.061A: F Analytical Batch: DA047736TER Instrument Usee: DA-GCMS-005 Rumning on: 08001/22 13.05:04 Dilution: 10 Reagent: 032322.16 Consumables: 210414634; MKCNS	0.9478g FL, SOP.T.40.061A.I	0.007	ND Extraction d 08/01/22 12	ND ate: ::20:44		2651
58.24 ND ND ND ND ND ND ND ND ND	0.416 ND ND ND ND ND ND ND			Analyzed by: 3404, 2651, 585 Analysis Method : SOP.T.30.061A F Analytical Batch : DA047736TER Instrument Used : DA-CCMS-005 Running or : 08/01/22 13:05:04 Dilution : 10 Reagent : 032322.16 Consumables : 210414634; MKCNS	0.9478g FL, SOP.T.40.061A.I	FL	Extraction d 08/01/22 12 Revie	ate: :20:44 ewed On : 0		2651
ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND			3404, 2651, 585 Analysis Method: SOP.T.30.061A.F Analytical Batch: DA:047736TER Instrument Used: DA:CGM5-005 Running on: 08/01/22 13:05:04 Dilution: 10 Reagent: 032322.16 Consumables: 210414634; MKCNS	0.9478g FL, SOP.T.40.061A.I		08/01/22 12 Revie	:20:44 ewed On : 0		2651
ND ND ND ND ND ND ND ND	ND ND ND ND ND O.665			3404, 2651, 585 Analysis Method: SOP.T.30.061A.F Analytical Batch: DA:047736TER Instrument Used: DA:CGM5-005 Running on: 08/01/22 13:05:04 Dilution: 10 Reagent: 032322.16 Consumables: 210414634; MKCNS	0.9478g FL, SOP.T.40.061A.I		08/01/22 12 Revie	:20:44 ewed On : 0		2651
ND ND ND ND 93.1	ND ND ND ND 0.665			Analytical Batch: DA047736TER Instrument Used: DA-GCMS-005 Running on: 08/00/22 13:05:04 Dilution: 10 Reagent: 032322.16 Consumables: 210414634; MKCNS						
ND ND ND 93.1	ND ND ND 0.665			Instrument Used: DA-GCMS-005 Running on: 08/01/22 13:05:04 Dilution: 10 Reagent: 032322.16 Consumables: 210414634; MKCNS	9995; CE0123; 147	25401				
ND ND 93.1 ND	ND ND 0.665			Running on: 08/01/22 13:05:04 Dilution: 10 Reagent: 032322.16 Consumables: 210414634; MKCN9	9995; CE0123; 147	25401	Batch	Date: 07/	31/22 21:25:55	
ND 93.1 ND	ND 0.665			Dilution: 10 Reagent: 032322.16 Consumables: 210414634; MKCNS	9995; CE0123; 147	25401				
93.1 ND	0.665			Reagent: 032322.16 Consumables: 210414634; MKCN9	9995; CE0123; 147	25401				
ND					9995; CE0123; 147	25401				
	ND									
NIP.										
ND	ND			Terpenoid testing is performed utilizing	Gas Chromatograph	y Mass Spect	rometry.			
ND	ND									
ND	ND									
3.22	0.023									
19.74	0.141									
5.88	0.042									
ND	ND									
9.24	0.066									
ND	ND									
69.58	0.497									
ND	ND									
<2.8	< 0.02									
ND	ND			/ // /						
6.44	0.046									
7777777	3.22 7 19.74 7 5.88 7 ND 7 9.24 7 ND 7 69.58 7 ND 7 < <2.8 7 ND	3.22 0.023 7 19.74 0.141 7 5.88 0.042 7 ND ND 7 9.24 0.066 7 ND ND 7 69.58 0.497 7 ND ND 7 < 2.8 <0.02 7 ND ND	3.22 0.023 7 0.141 7 5.88 0.042 7 ND ND 7 9.24 0.066 7 ND ND 7 69.58 0.497 7 ND ND 7 69.58 0.497 7 ND ND 7 64.4 0.046	3.22 0.023 7 0.141 7 5.88 0.492 7 ND ND 7 9.24 0.066 7 ND ND 7 69.58 0.497 7 ND ND 7 69.58 0.497 7 ND ND 7 64.4 0.066	3.22 0.023 7 19,14 0.141 7 5.88 0.042 7 ND ND 7 9,24 0.066 7 ND ND 7 69.58 0.497 7 ND ND 7 69.58 0.497 7 ND ND 7 64.44 0.046	3.22 0.023 7 19,74 0.141 7 5.88 0.042 7 ND ND 7 9,24 0.066 7 ND ND 7 69.58 0.497 7 ND ND 7 69.58 0.497 7 ND ND ND 7 64.44 0.046	3.22 0.023 7 19,74 0.141 7 5.88 0.042 7 ND ND 7 9,24 0.066 7 ND ND 7 69,58 0.497 7 ND ND 7 69,58 0.497 7 ND ND 7 64,44 0.046	3.22 0.023 7 19,74 0.141 7 5.88 0.42 7 ND ND 7 9,24 0.066 7 ND ND 7 69.58 0.497 7 ND ND 7 69.58 0.497 7 ND ND 7 64.4 0.046	3.22 0.023 7 19,74 0.141 7 5.88 0.492 7 ND ND 7 9,24 0.066 7 ND ND 7 69.58 0.497 7 ND ND 7 69.58 0.497 7 ND ND ND 7 64.4 0.046	3.22 0.023 7 19,74 0.141 7 5.88 0.042 7 ND ND 7 9,24 0.066 7 ND ND 7 69.58 0.497 7 ND ND 7 69.58 0.497 7 ND ND 7 64.4 0.046

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

08/02/22

Kaycha Labs

710 Labs Rainbow Belts Flower 14g 710 Labs Rainbow Belts Matrix : Flower

Certificate of Analysis

PASSED

The Flowery

Samples From: Homestead, FL, 33090, US **Telephone:** (321) 266-2467 Email: osivan@moozacapital.com Sample : DA20729010-002 Harvest/Lot ID: 20220630-710RB-H

Batch#:1000030794 Sampled: 07/29/22 Ordered: 07/29/22

Sample Size Received: 42 gram Total Batch Size: 455 units Completed: 08/02/22 Expires: 08/02/23 Sample Method: SOP.T.20.010

Page 3 of 5

Pesticides

PASSED

_											
Pesticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	LOD	Units	Action Level	Pass/Fail	Result
TOTAL CONTAMINANT LOAD (PESTICIDES)	0.01	PPM	5	PASS	ND	PACLOBUTRAZOL	0.01	mag	0.1	PASS	ND
OTAL DIMETHOMORPH	0.01	PPM	0.2	PASS	ND	PHOSMET	0.01	ppm	0.1	PASS	ND
OTAL PERMETHRIN	0.01	ppm	0.1	PASS	ND	PIPERONYL BUTOXIDE	0.01	ppm	3	PASS	ND
OTAL SPINETORAM	0.01	PPM	0.2	PASS	ND						
OTAL SPINOSAD	0.01	ppm	0.1	PASS	ND	PRALLETHRIN	0.01	ppm	0.1	PASS	ND
BAMECTIN B1A	0.01	ppm	0.1	PASS	ND	PROPICONAZOLE	0.01	ppm	0.1	PASS	ND
СЕРНАТЕ	0.01	ppm	0.1	PASS	ND	PROPOXUR	0.01	ppm	0.1	PASS	ND
CEOUINOCYL	0.01	ppm	0.1	PASS	ND	PYRETHRINS	0.01	ppm	0.5	PASS	ND
CETAMIPRID	0.01	ppm	0.1	PASS	ND	PYRIDABEN	0.01	ppm	0.2	PASS	ND
LDICARB	0.01	ppm	0.1	PASS	ND	SPIROMESIFEN	0.01	ppm	0.1	PASS	ND
ZOXYSTROBIN	0.01	ppm	0.1	PASS	ND	SPIROTETRAMAT	0.01	mag	0.1	PASS	ND
FENAZATE	0.01	ppm	0.1	PASS	ND	SPIROXAMINE	0.01	ppm	0.1	PASS	ND
IFENTHRIN	0.01	ppm	0.1	PASS	ND					PASS	ND
DSCALID	0.01	PPM	0.1	PASS	ND	TEBUCONAZOLE	0.01	ppm	0.1		
ARBARYL	0.01	ppm	0.5	PASS	ND	THIACLOPRID	0.01	ppm	0.1	PASS	ND
ARBOFURAN	0.01	ppm	0.1	PASS	ND	THIAMETHOXAM	0.01	ppm	0.5	PASS	ND
HLORANTRANILIPROLE	0.01	ppm	1	PASS	ND	TRIFLOXYSTROBIN	0.01	ppm	0.1	PASS	ND
HLORMEQUAT CHLORIDE	0.01	ppm	1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *	0.01	PPM	0.15	PASS	ND
HLORPYRIFOS	0.01	ppm	0.1	PASS	ND	PARATHION-METHYL *	0.01	PPM	0.1	PASS	ND
OFENTEZINE	0.01	ppm	0.2	PASS	ND	CAPTAN *	0.07	PPM	0.7	PASS	ND
DUMAPHOS	0.01	ppm	0.1	PASS	ND	CHLORDANE *	0.01	PPM	0.1	PASS	ND
AMINOZIDE	0.01	ppm	0.1	PASS	ND		0.01	PPM	0.1	PASS	ND
AZINON	0.01	ppm	0.1	PASS	ND	CHLORFENAPYR *		/ / /			
CHLORVOS	0.01	ppm	0.1	PASS	ND	CYFLUTHRIN *	0.05	PPM	0.5	PASS	ND
	0.01	ppm	0.1	PASS	ND	CYPERMETHRIN *	0.05	PPM	0.5	PASS	ND
METHOATE	0.01	ppm	0.1	PASS	ND	Analyzed by: Weight:	Extrac	tion date:		Extracted	d by:
THOPROPHOS	0.01	ppm	0.1	PASS	ND	3404, 3379, 585 1.0223g		22 13:25:28		3379	
OFENPROX	0.01		0.1	PASS	ND	Analysis Method: SOP.T.30.101.FL, SOP.T.	30.102.FL, S	OP.T.30.15	L.FL, SOP.T.4	0.101.FL, SOP	.T.40.10
TOXAZOLE		ppm	0.1	PASS	ND	SOP.T.40.151.FL		_ \ / .	- 00/02/2	2 11 54 42	
ENHEXAMID	0.01	ppm	0.1	PASS	ND ND	Analytical Batch : DA047752PES Reviewed On : 08/02/22 11:54:43 Instrument Used : DA-LCMS-003 (PES) Batch Date : 08/01/22 09:47:39					
ENOXYCARB		ppm	0.1	PASS	ND	Running on :08/01/22 13:31:51		Daten Dat	e :00/01/22	05.47.55	
ENPYROXIMATE	0.01	ppm	0.1	PASS	ND ND	Dilution: 250					
PRONIL		ppm				Reagent: 080122.R07; 072222.R02; 07202	22.R48; 072	722.R01; 09	2820.59		
LONICAMID	0.01	ppm	0.1	PASS	ND	Consumables: 6676024-02					
LUDIOXONIL	0.01	ppm	0.1	PASS	ND	Pipette : DA-093; DA-094; DA-219					
EXYTHIAZOX	0.01	ppm	0.1	PASS	ND	Testing for agricultural agents is performed u					
MAZALIL	0.01	ppm	0.1	PASS	ND	Spectrometry and Gas Chromatography Triple 64ER20-39.	e-Quadrupole	Mass Spect	rometry in ac	cordance with	F.S. Rule
MIDACLOPRID	0.01	ppm	0.4	PASS	ND	Analyzed by: Weight:	Evdus eti	on date:		Extracted	l lever
RESOXIM-METHYL	0.01	ppm	0.1	PASS	ND	3404, 450, 53 1.0223q		2 13:43:15		450	ı by:
ALATHION	0.01	ppm	0.2	PASS	ND	Analysis Method : SOP.T.30.060, SOP.T.40.		13.43.13		430	
ETALAXYL	0.01	ppm	0.1	PASS	ND	Analytical Batch : DA047754VOL		eviewed On	:08/02/22 1	.0:51:49	
ETHIOCARB	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-GCMS-006			08/01/22 09:		
ETHOMYL	0.01	ppm	0.1	PASS	ND	Running on : N/A					
EVINPHOS	0.01	ppm	0.1	PASS	ND	Dilution: 25					
YCLOBUTANIL	0.01	ppm	0.1	PASS	ND	Reagent: 072222.R02; 092820.59; 071522	2.R30; 07152	22.R31			
ALED	0.01	ppm	0.25	PASS	ND	Consumables: 6676024-02; 14725401					
XAMYL	0.01	ppm	0.5	PASS	ND	Pipette: DA-080; DA-146 Testing for agricultural agents is performed u Spectrometry and Gas Chromatography Triple 64ER20-39.					

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

08/02/22

Kaycha Labs

710 Labs Rainbow Belts Flower 14g 710 Labs Rainbow Belts Matrix: Flower

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US **Telephone:** (321) 266-2467 Email: osivan@moozacapital.com Sample : DA20729010-002 Harvest/Lot ID: 20220630-710RB-H

Batch#:1000030794

Sampled: 07/29/22 Ordered: 07/29/22

Reviewed On: 08/02/22 07:28:21

Batch Date: 07/30/22 08:22:42

Sample Size Received: 42 gram Total Batch Size: 455 units

Completed: 08/02/22 Expires: 08/02/23 Sample Method: SOP.T.20.010

Page 4 of 5

Microbial

PASSED

Mycotoxins

PASSED

Analyte		LOD	Units	Result	Pass / Fail	Action Level
ESCHERICHIA COL SPP	I SHIGELLA			Not Present	PASS	
SALMONELLA SPE	CIFIC GENE			Not Present	PASS	
ASPERGILLUS FLA	VUS			Not Present	PASS	
ASPERGILLUS FUN	IIGATUS			Not Present	PASS	
ASPERGILLUS TER	REUS			Not Present	PASS	
ASPERGILLUS NIG	ER			Not Present	PASS	
TOTAL YEAST AND MOLD		10	CFU/g	10	PASS	100000
Analyzed by: 3404, 3390, 53	Weight: 1.1076g		tion date: /22 16:40		Extracted 3390	by:

Analysis Method: SOP.T.40.041, SOP.T.40.043, SOP.T.40.045, SOP.T.40.056B, SOP.T.40.058.FL

Analytical Batch : DA047688MIC Instrument Used: DA-265 Gene-UP RTPCR

Running on: N/A

Dilution: N/A Reagent: 071122.R02; 061522.45

Consumables: 500124

Microbial testing is performed utilizing various technologies including: PCR, RTPCR, MPN, and traditional culture based techniques in accordance with F.S. Rule 64ER20-39..

Analyzed by: 3404, 3390, 2682, 53 07/30/22 16:40:37 1.1076a 3390 Analysis Method: SOP.T.40.041 Analytical Batch: DA047719TYM Reviewed On: 08/02/22 08:09:09 Instrument Used: Incubator (25-27C) DA-097 Batch Date: 07/30/22 16:41:39 Running on : N/A

Dilution: 10

Reagent: 071122.R02; 061522.45

Consumables: 500124 Pipette: N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

Analyte	LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN B2	0.002	ppm	ND	PASS	0.02
AFLATOXIN B1	0.002	ppm	ND	PASS	0.02
OCHRATOXIN A	0.002	ppm	ND	PASS	0.02
AFLATOXIN G1	0.002	ppm	ND	PASS	0.02
AFLATOXIN G2	0.002	ppm	ND	PASS	0.02

Analyzed by: 3404, 3379, 585 Weight: Extraction date: Extracted by: 08/01/22 13:30:21 Analysis Method: SOP.T.30.101.FL, SOP.T.40.101.FL, SOP.T.30.102.FL, SOP.T.40.102.FL Analytical Batch : DA047753MYC Reviewed On: 08/02/22 11:57:46

Instrument Used: DA-LCMS-003 (MYC) Running on: 08/01/22 13:31:42

Dilution: 230 Reagent: 080122.R07; 072222.R02; 072022.R48; 072722.R01; 092820.59 Consumables: 6676024-02

Pipette: DA-093; DA-094; DA-219

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals

PASSED

Batch Date: 08/01/22 09:51:10

Metal		LOD	Units	Result	Pass / Fail	Action Level
TOTAL CONTAMINANT LO	AD METALS	0.11	PPM	ND	PASS	1.1
ARSENIC		0.02	PPM	ND	PASS	0.2
CADMIUM		0.02	PPM	ND	PASS	0.2
MERCURY		0.02	PPM	ND	PASS	0.2
LEAD		0.05	PPM	ND	PASS	0.5
Analyzed by: 3404, 1022, 3619, 53	Weight: 0.283g	Extractio 08/01/22	n date: 10:00:54	Y	Extracte 3619	d by:

Analysis Method: SOP.T.30.081.FL, SOP.T.30.082.FL, SOP.T.40.081.FL, SOP.T.40.082.FL Analytical Batch : DA047691HEA Reviewed On: 08/02/22 11:24:32 Instrument Used: DA-ICPMS-003 Running on: 08/01/22 16:05:39 Batch Date: 07/30/22 09:35:36

Dilution: 100

Reagent: 072122.R01; 071522.R26; 072122.R23; 072922.R22; 072122.R02; 072922.R20; 072922.R21; 071522.R25; 072122.R29

Consumables: 179436; 210508058; 210803-059

Pipette: DA-061; DA-216

 $Heavy\ Metals\ analysis\ is\ performed\ using\ Inductively\ Coupled\ Plasma\ Mass\ Spectrometry\ in\ accordance\ with\ F.S.\ Rule\ 64ER20-39.$

This Kaycha Labs Cerfitication shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo Lab Director

ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

08/02/22

Kaycha Labs

710 Labs Rainbow Belts Flower 14g 710 Labs Rainbow Belts Matrix: Flower

PASSED

Samples From: Homestead, FL, 33090, US **Telephone:** (321) 266-2467 Email: osivan@moozacapital.com Sample : DA20729010-002 Harvest/Lot ID: 20220630-710RB-H

Batch#:1000030794

Sampled: 07/29/22 Ordered: 07/29/22

Certificate of Analysis

Sample Size Received: 42 gram Total Batch Size: 455 units

Completed: 08/02/22 Expires: 08/02/23 Sample Method: SOP.T.20.010

Page 5 of 5

Filth/Foreign **Material**

PASSED

Moisture

Analyte Filth and Foreign Materia	LOD al 0.5	Units %	Result ND	P/F PASS	Action Level	Analyte Moisture Content		LOD 1	Units %	Result 12.05	P/F PASS	Action Level 15
. , ,		Extraction o	late:	Extract N/A	ted by:	Analyzed by: 3404, 1879	Weight: 0.498g		action date 01/22 00:08		Ext 187	racted by:
Analysis Method : SOP.T.30.074, SOP.T.40.074 Analytical Batch : DA047738FIL					Analysis Method : SOI Analytical Batch : DAO Instrument Used : DA	047711MOI	Analyzei		Reviewed Or Batch Date :			

Running on: 08/01/22 00:09:23

Dilution: N/A

Reagent : N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Dilution: N/A Reagent: N/A Consumables : N/A Pipette: N/A

Running on: 08/01/22 00:09:08

Moisture Content analysis utilizing loss-on-drying technology in accordance with F.S. Rule 64ER20-39

Water Activity

PASSED

Analyte Water Activity		LOD 0.1	Units aw	Result 0.507	P/F PASS	Action Level 0.65
Analyzed by: 3404, 1879	Weight: NA				Extra N/A	acted by:
Analysis Method : SOI				Paviawad C	n . 08/01/2	22.00:10:54
Instrument Used : DA	lm	Reviewed On: 08/01/22 00:10:54 Batch Date: 07/30/22 12:10:34				

Instrument Used: DA-028 Rotronic Hygropalm Running on: 07/30/22 12:21:35 Dilution: N/A

Reagent: N/A Consumables : N/A Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

Jorge Segredo Lab Director

ISO Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

08/02/22